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Abstract

This SAND report summarizes our work on the Sandia National Laboratory LDRD project titled
“Efficient Probability of Failure Calculations for QMU using Computational Geometry” which
was project #165617 and proposal #13–0144. This report merely summarizes our work. Those
interested in the technical details are encouraged to read the full published results, and contact the
report authors for the status of the software and follow-on projects.
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Summary

The intent of the project was to explore using computational geometry and computer graphics
techniques to discover new algorithms for Quantified Margins of Uncertainty (QMU), a form of
uncertainty quantification. Our core techniques were sampling, notably hyper-line sampling and
sphere packing sampling, together with Voronoi diagrams and surrogate functions. Many times the
applications involved numerical integration and surrogate functions of some form. A number of
mesh generation applications also emerged, using the same core sampling techniques and Voronoi
diagrams.

The project was successful, in terms of spawning non-traditional and practical approaches,
publishing, and gaining external visibility. The project remained relevant to Sandia’s internal mis-
sions as well, broadly those involving simulation based science and engineering. The project had a
strong cross-disciplinary approach. The project nominally consisted of two Center for Computing
Research staff researching and developing software about half-time, together with part-time efforts
from Engineering Sciences staff for method applications. We also had a university partnership in
each year, which allowed us to gain insights into the techniques of other fields (e.g. computer
graphics and geometric modeling), and enabled the application of our core algorithms to other
fields.

Many of the techniques were deployed in stand-alone demonstration software. Some of the
more practical capabilities, notably some uncertainty quantification and optimization algorithms,
together with a library for analytic surrogate functions for interpolating data, were deployed in
Sandia’s optimization toolkit DAKOTA. A number of natural follow-on projects emerged.
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Chapter 1

Technical Results, Publications and Talks

Here we list our papers, in various states of publication, including appeared, accepted, in revision,
and in preparation.

1.1 Optimization and UQ Specific Results

1.1.1 POF-Darts

A major contribution of this LDRD has been the development of a method to calculate failure
probabilities called “POF-Darts” (Probability of Failure Darts). POF-Darts is based on random
disk-packing in the uncertain parameter space. POF-Darts uses hyperplane sampling to explore
the unexplored part of the uncertain space. We use the function evaluation at a sample point to
determine whether it belongs to failure or non-failure regions, and surround it with a protection
sphere region to avoid clustering. Decomposing the domain into Voronoi cells around the function
evaluations as seeds, our strategy to choose the radius of the protection sphere depends on the local
Lipschitz continuity. For each cell, we estimate the local Lipschitz continuity using the function
values of the significant Voronoi neighbors, and create a sphere to protect its neighborhood from
future sampling. As sampling proceeds, regions uncovered with spheres will shrink, improving
the estimation accuracy. After exhausting the function evaluation budget, we build a surrogate
model using the function evaluations associated with the sample points and estimate the probability
of failure by exhaustive sampling of that surrogate. In comparison to popular methods used to
estimate failure probabilities, our algorithm has the following advantages:

1. Decoupling the sampling step from the surrogate construction step

2. The ability to reach target POF values with fewer samples

3. The capability of estimating the number and locations of disconnected failure regions in
addition to the probability of failure estimate

We submitted a revised version of the paper titled “POF-Darts: Geometric Adaptive Sampling
for Probability of Failure” [7] to the SIAM Journal of Uncertainty Quantification on June 26, 2015.
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This version of the paper had a number of improvements based on the reviewers’ comments on our
first version. Specifically, the revised version had a more detailed description of the algorithm
choices we used. We also included a mathematical analysis which provides analytical bounds on
the expected accuracy of the probability of failure estimates. Finally, the revised paper had a more
comprehensive set of test problems and comparison of methods.

Figure 1.1 shows the concept of POF Darts applied to a problem with four failure regions.
Figure 1.2 shows the results of POF Darts compared to Latin Hypercube Sampling (LHS) for
this same problem, based on an increasing number of samples. Note how POF-Darts focuses the
samples near the failure region much more efficiently than LHS.

!

Figure 1.1. Applying POF-Darts to a test problem with four fail-
ure regions. After exhausting the sampling budget a GP surrogate
is built and utilized to estimate the POF. The failure isocontours
from the surrogate are colored in red while the exact one are col-
ored in blue. For this test problem in both cases the isocontours
were on top of each other indicating an accurate estimate.

1.1.2 Voronoi Piecewise Surrogates

“VPS: Voronoi Piecewise Surrogates for Fitting Noisy High-Dimensional Data” describes a geo-
metric technique for subdividing a domain, in order to describe the local neighborhood of a sample
within a set. This enables us to build surrogate functions that match the data locally. This subpro-
ject was born out of a need for POF-Darts: once a set of disks has been placed in the domain, we
need to estimate the probability of failure using them. Our initial idea was to estimate the volume
of the union of failure disks for a lower bound on the probability of failure, and the complement of
the volume of the union of not-failure disks for an upper bound. Since computing this exactly in
high dimensions is prohibitive, we devised a computationally efficient way to estimate the volume

12
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Figure 1.2. Comparing the sampling phase of LHS (top row)
to POF-Darts (bottom row) on the Herbie problem. From left to
right in both rows, the number of samples are 100, 500, 1000,
and 5000, respectively. LHS does a great job of space-filling the
sample points, but POF-Darts focuses the samples near the failure
boundaries.

of a union of spheres. We gave a talk at the SIAM GD/SPM [12]. However, it became clear that
we could do better. Instead of estimating volumes, we built a surrogate function meant to indicate
whether one was closer to a failure disk (1) or not-failure disk (0), and numerically estimated the
volume of the failure region, equivalent to estimating the average value of the surrogate function
over the domain. We then realized that generalizing this to other types of surrogates could be a
big contribution to the field, since most extant methods build a global surrogate that ignores local-
ity. We assume this historical shortcoming was because it is hard to compute local neighborhoods
(Voronoi cells) exactly in high dimensions.

VPS [18] introduces a new method to construct accurate global surrogate models with local
credibility in high-dimensional spaces: Voronoi Piecewise Surrogate (VPS) models. The key idea
is to implicitly decompose the high-dimensional parameter space by the Voronoi tessellation of the
sample points. Once a sample point knows its (approximate) Voronoi neighbors, we can build a
surrogate for its cell using any standard (global) surrogate technique. See Figure 1.3 and Figure 1.4.

Exact cells are intractable in high dimensions, but fortunately this is not needed. The actual
queries we must support are to determine which cell an arbitrary point belongs to, and the surro-
gate function value at that point. VPS assigns points to cells unambigously using a simple nearest
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neighbor search. VPS finds the approximate cell boundaries and approximate neighbors via local
hyperplane sampling, without constructing an explicit cell mesh, and this is sufficient to build a
surrogate function. Approximate cells for building the surrogate are especially reasonable consid-
ering that the surrogate itself is only an approximation of the true function.

Advantages

• VPS is flexible, allowing any surrogate to be built on a cell, even a surrogate traditionally
based on global data.

• VPS breaks down the high-order polynomial approximation problem into a set of piecewise
low-order polynomial approximation problems in the neighborhood of each function evalu-
ation, independently.

• The one-to-one mapping between the number of function evaluations and the number of
Voronoi cells, regardless of the number of dimensions, eliminates the curse of dimensionality
associated with standard domain decompositions.

• The Voronoi tessellation is naturally updated with the addition of new function evaluations.

• VPS accurately models functions with discontinuities by allowing discontinuities at Voronoi
cell boundaries. Voronoi neighbors may ignore each other when building their surrogates if
it appears that there is a large functional jump or discontinuity between them.

Status In Dakota, this has been implemented as a domain decomposition option for global
surrogates. The paper is in preparation for submission to SIAM Journal on Uncertainty Quantifi-
cation.

Figure 1.3. A two-dimensional example of VPS. Top row has
sample points and cells. Bottom row shows neighbors and samples
of the surrogate falling into cells.

1.1.3 Methods Comparison

“A Set of Test Problems and Results in Assessing Method Performance for Calculating Low Prob-
abilities of Failure” [16] was accepted to a conference. It compares several global reliability meth-
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Figure 1.4. VPS surrogates of various orders, compared to the
true function and its isocontours.
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ods, to evaluate the cost and accuracy performance for calculating failure probabilities of magni-
tudes 10−2 to 10−6 in various low to moderate dimensional (2D to 10D) test problems, on some
test problems and engineering applications. We also compared our new POF-darts algorithm over
these problems, and found that it was competitive.

1.2 General Sampling, Across Applications

1.2.1 Hyperplane Sampling

“k-d Darts: Sampling by k-Dimensional Flat Searches” [8] was presented at SIGGRAPH to an
audience of thousands, and the paper appeared in the ACM Transaction on Graphics, the ACM
journal with the highest impact factor. We also presented it at UT Austin in an invited talk, and at
the SIAM UQ14, in a minisymposium we organized.

It considers the general problem of sampling hierarchically by dimension, which finds appli-
cation across fields. It formalizes this approach using k-d darts, a set of independent, mutually
orthogonal, k-dimensional hyperplanes called k-d flats. A dart has d choose k flats, aligned with
the coordinate axes for efficiency. (In later work, we discovered that deterministically distributing
the flats amongst the combinations of axes was not required, and it was sufficient to select the
orientation of each dart randomly.) We show k-d darts are useful for exploring a function’s proper-
ties, such as estimating its integral, or finding an exemplar above a threshold. We describe a recipe
for converting some algorithms from point sampling to k-d dart sampling, if the function can be
evaluated along a k-d flat.

We demonstrate that k-d darts are more efficient than point-wise samples in high dimensions,
depending on the characteristics of the domain: for example, the subregion of interest has small
volume and evaluating the function along a flat is not too expensive. We present three concrete
applications using line darts (1-d darts): relaxed maximal Poisson-disk sampling, high-quality
rasterization of depth-of-field blur, and estimation of the probability of failure from a response
surface for uncertainty quantification. Line darts achieve the same output fidelity as point sampling
in less time. For Poisson-disk sampling, we use less memory, enabling the generation of larger
point distributions in higher dimensions. Higher-dimensional darts provide greater accuracy for a
particular volume estimation problem.

1.2.2 Recursive k-d Darts

“Recursive k-d Darts for High-Dimensional Numerical Integration” [2] builds on k-d Darts, gen-
eralizing the notion of what it means to sample with a hyperplane. In particular, we define this
recursively, so that a (k)-dimensional hyperplane “sample” (value) may be composed of “samples”
from (k−1)-dimensional sub-hyperplanes. At the bottom level of recursion there is always a point
sample, unless the underlying function can be evaluated analytically along a line, etc. See Fig-
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Figure 1.5. Hyperplane (line, plane, etc.) samples are more ex-
pensive to compute, but provide more information. They are also
much more likely to intersect a subregion of interest, especially if
that subregion is long and thin.

ure 1.6. It tackles one dimension at a time, transforming the problem into a set of 1-dimensional
problems, which can each be solved efficiently. Recursive k-d darts is a novel method for numerical
integration of high-dimensional functions, across applications. Our first demonstration application
is a graphics ray tracer with depth of field blur, in part because this is a problem of interest to our
university partner and the community at large.

Numerical integration methods are deployed in many problems, e.g. ray tracing in graph-
ics, probability of failure in uncertainty quantification. For high-dimensional parameter spaces,
classical integration methods are biased, suffer from the curse of dimensionality, or have slow
error convergence rate. We introduce a novel method of sampling and evaluating integrations
in high-dimensional domains: recursive k-d darts. Fundamentally, our method decomposes a
d-dimensional integration problem into a series of one dimensional integrations, avoiding high-
dimensional complexities. In specific, we build a recursion of 1-dimensional subspaces, sample
each 1-dimensional subspace using a constrained random sampling approach, construct local La-
grange approximation surrogates to evaluate the integral up to that subspace level, and report the
interpolation and evaluation errors at each step to the parent subspace. The locality of the surro-
gates enables our method to detect local features, such as functional discontinuities. Our method
can have a much faster convergence rate when compared to random Monte Carlo methods; the
actual performance depends on many factors, including the dimensionality of the problem, the ori-
entation of the hyperplanes with respect to the function gradient, and how amenable the function
is to an accurate surrogate model over the evaluation points. For an application with a limited
sampling budget, our algorithm can suggest where to place new samples so they will provide the
most information for the integration accuracy.
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sion, discontinuities, and the shape of the domain, but highly de-76

pendent on the size of the region of interest.77

There is extensive work on random sampling methods in computer78

graphics, especially for physically-based rendering such as in ray79

tracing. For example, Monte-Carlo-based methods have been used80

for solving global illumination problems such as solving the ren-81

dering equation (path tracing) [?; ?], stratified sampling in light82

transport problem [?], the Russian roulette method in particle trans-83

port in ray tracing [?], and importance sampling in rendering prob-84

lems [?]. All these methods try to improve the Monte Carlo method85

by choosing a nonuniform distribution of samples in the domain of86

interest.87

1.1.2 Structured Sampling88

Compared to the random sampling methods, there are some struc-89

tured sampling methods that choose sample points at determinis-90

tic locations. Samples are arranged in a grid-like pattern, span-91

ning each dimension. The structured locations provide weighted92

higher-order approximations. For example, Gaussian quadrature93

rules use n points and yield an exact result for polynomials of de-94

gree 2n� 1 [?; ?; ?]. The main problem with the Gaussian quadra-95

tures is that they require full tensor grids and quickly become very96

expensive as the number of dimensions increases, exponential in97

d. A tensor product grid of five quadrature points in each dimen-98

sion has only twenty-five points in two dimensions, but almost ten99

million in ten dimensions. Structured sampling methods are less100

popular in graphics applications because they do not usually show101

the same level of flexibility of random methods in dealing with un-102

known random function behaviors. However, there are some strictly103

deterministic integration methods with promising performance over104

graphics applications (e.g., Keller [?]).105

Sparse grids try to reduce the number of samples. The sampling is106

not a regular k by d grid, but some samples are removed and the107

spacing is irregular. This results in combining tensor products of108

one-dimensional components [?; ?; ?]. They succeed in reducing109

the number of samples; however, in practice they do not eliminate110

the curse of dimensionality, even in their adaptive versions [?; ?].111

Asymptotically, sparse grids have superior convergence to Monte112

Carlo, but in practice, for high dimensions, they are slower because113

it is difficult to reach the asymptotic regime. Also, sparse grids do114

not handle discontinuities because of the structured locations and115

smooth polynomial that they use.116

1.2 Recursive k-d darts Overview117

Recursive k-d darts is an algorithm to evaluate the integration of a
d-dimensional black box function f(x) via recursive sampling over
d, using hyperplanes of dimension k 2 {d, d � 1, . . . , 0}. Fun-
damentally, we decompose the d-dimensional integration problem
given in (??) into a series of nested one-dimensional problems:

I =

Z

xd

. . .

Z

x2

Z

x1

f(x) dx1dx2 . . . dxd (2)

That is, we start at the root level (the whole domain) and start sam-118

pling down using hyperplanes of one lower dimension, all the way119

down to zero (points). A d-dimensional domain is subsampled us-120

ing (d� 1) hyperplanes, a (d� 1)-dimensional sub-domain is sub-121

sampled using (d � 2) hyperplanes, and so on. Every hyperplane,122

regardless of its dimension, is evaluated as a one-dimensional func-123

tion at points represented by sampled hyperplanes of one lower di-124

mension.125

Each hyperplane has direct information exchange with its parent126

hyperplane of one higher dimension, and its children of one lower127

Five 2-d hyperplanes
used to evaluate a 3-d

hyperplane

Three 1-d hyperplanes
used to evaluate a 2-d

hyperplane

Two 0-d hyperplanes
used to evaluate a 1-d

hyperplane

Figure 2: Recursive k-d Darts. A nesting of hyperplanes estimates
an integral over the 3-d domain. A 3-d hyperplane spanning the en-
tire space is at the top of the recursion, left. It is decomposed into
a 1-d function, the red line. Each point on the line is an orthogonal
2-d hyperplane. Each 2-d hyperplane is evaluated by recursively
decomposing it into a (bold blue, middle) line, and a set of orthog-
onal lines. The points on the 1-d functional line are simply points.
Every hyperplane, regardless of dimension, is evaluated as a 1-d
function at points represented by hyperplanes of one lower dimen-
sion. We fit approximation surrogates over these points.

dimension. See Figure ?? for a simple example. In each one-128

dimensional problem, we create a number of piecewise (local) ap-129

proximation surrogate models of the function, using Lagrange in-130

terpolation. Information is exchanged between different levels, in-131

cluding integration values, and interpolation and evaluation errors,132

in order to:133

1. Find the integration value up to that level.134

2. Estimate the associated integration error.135

3. Guide the placement of future samples.136

These steps will be explained in detail in Section ??.137

Recursive k-d darts extend the advantages of k-d darts [?] to com-138

plicated black-box functions typical of numerical integration prob-139

lems. In this work, we assume function values are not available140

except at point samples (k = 0). Hence, we propose to evaluate141

k-dimensional darts recursively, using one or more (k � 1) dimen-142

sional hyperplanes, evaluating the function at a point at the bottom143

of the recursion.144

Since we reduce the dimension by 1 in each step, we convert the145

problem into a series of one-dimensional problems. We use accu-146

racy estimates to decide whether to add a hyperplane with a new147

sample at the current dimension, or refine an existing hyperplane148

with a new sample at a lower dimension. Note that we propose more149

than a simple extension of k-d darts [?], whose key idea was sam-150

pling hyperplanes instead of points. Recursive k-d darts requires a151

new framework to manage the recursion, construct the surrogates,152

and integrate them.153

Integration by k-d darts has a similar convergence rate as Monte154

Carlo, O(n�1/2), although the convergence constant improves with155

higher dimensional darts. In contrast, in our proposed recursive156

version, nested hyperplanes boost efficiency beyond this. The157

key is the one-dimensional surrogates. We achieve super-linear158

convergence, similar to quadrature and Latin-hypercube methods,159

while using random samples. Moreover, discontinuous domains160

or discontinuous functions are tractable, and only slow the method161

slightly. Because integration tends to smooth discontinuities, many162

difficult issues disappear with our approach, as we describe below.163

We emphasize that recursive k-d darts has the super-linear conver-164

gence benefit of quadrature methods and the randomness benefit of165

2

Figure 1.6. A hyperplane sample is composed of one-dimension-
lower hyperplane samples; projected onto the line of the fixed co-
ordinates of the sub-samples, the subsamples lie on a line, and
the hyperplane value is some average or surrogate through those
points. This recasts general high dimensional problems as a series
of one dimensional problems.

1.2.3 Spoke Darts

Spoke Darts [13] considers is a different kind of line sample, namely radial line samples. In this
paper we use this to develop a blue noise sampling method that can achieve high quality and
performance across different dimensions, although we consider it a general method for exploiting
spherical coordinate systems and symmetry, and speculate that we could also create a recursive
version analogous to recursive k-d darts.

In the blue noise application, performance is achieved by combining the locality of advancing
front with the dimension-reduction of hyperplanes. Spoke Darts generates line segments through
prior samples, to explore the local uncovered space suitable for the next sample; see Figure 1.7(a).
Uniform point sampling from these lines produces traditional blue noise; non-uniform sampling
produces step blue noise. We create step blue noise directly. In contrast, the current alternatives use
compute-intensive position optimization as a post-process, or are fundamentally low dimensional.
Our method is efficient enough to generate blue noise distributions in 23 dimensions for motion
planning. Beyond generating blue noise point sets, we extend spoke darts to build approximate
Delaunay graphs and perform global optimization more efficiently.

Of particular interest to this LDRD, the approximate Delaunay graph (dual Voronoi cells) al-
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lowed us to build an enhanced version of the traditional DIRECT (division of rectangles) global
optimization algorithm. The advantage is that approximate Voronoi cells more accurately finds the
nearest sample and estimates functional trends than does hyper-rectangles. Our spoke darts variant
often increases the convergence rate of DIRECT, and avoids many bad cases of false-convergence;
see Figure 1.7(b).

Spoke Darts for Efficient Step Blue Noise in any Dimension • 5

s 

q 

p 

(a) line-spokes (b) wheels

Fig. 2: Spokes in a 2-d domain. In ??, a line-spoke (blue) is a radial line
segment of length w starting from the disk surface D(s) of a sample s. De-
generate line-spokes (yellow) have zero length and lie on the disk surface.
In ??, a plane spoke (blue) is a planar annulus. Degenerate wheels (yellow)
are circles on the disk. Here p and q indicate example samples drawn from
degenerate and full spokes.

4.4 Trim

Trimming a spoke consists of finding some subset of it that is un-
covered by extant disks. The effect of trimming is to take a line (or
great circle) and, for each neighbor, subtract out the interval that is
covered by that disk. See ?? for an efficient |N | log |N | implemen-
tation, which gathers all disk-line intersections then computes the
depth of each interval between intersections. A key performance
consideration is to ensure all trimming operations are efficient in
high dimensions, even with many nearby sample disks.

Shortcuts are allowed, in that it is acceptable to discard a spoke
even if part of it is not covered. This retains the correctness of the
algorithm, and affects the run-time and final distribution charac-
teristics, such as its saturation. By quitting when we detect that
some part of a spoke is covered, we avoid wasting time with fur-
ther searches in the case that the spoke is completely covered. The
fastest primitive is to determine if a single anchor point is covered
by a disk, since that just involves checking the squared distance
between the point and each neighbor. Retaining just the uncov-
ered segment containing the anchor is considerably faster than find-
ing all uncovered segments; see ??. Many combinations of these
heuristics are possible; the ones we found most useful are summa-
rized in ?? and ??.

Input: anchor a of spoke for sample s
Output: uncovered a or empty

1: for each neighbor s0 near s do
2: if ka� s0k2 < r2 then
3: return empty
4: return a

Algorithm 2: Trim anchor point.

4.5 RandomSample

Here we describe how to select a the sample point of an uncovered
spoke segment. For blue noise, it is sufficient to pick a sample uni-
formly by length from an uncovered segment. One might assume

Input: 1-d spoke `1 anchored at a for sample s
Output: uncovered segment containing a, of trimmed spoke `01

1: `01  [r, r + w]
2: for each neighbor s0 do
3: `01  `01 �D(s0)
4: `01  only the segment of `01 touching a

5: return `01

Algorithm 3: Trim anchored segment.

Input: line or great circle `1 with anchor p for s
Output: all uncovered segments, of trimmed spoke `01

1: {find all intersections}
2: intersections I  ;
3: depth 0
4: for each neighbor s0 of s do
5: {i+, i�} D(s0)

T
`1

6: I  I
S{i+, i�}

7: if p 2 D(s) then
8: increment(depth)
9: {find depth of intervals between intersections}

10: sort(I)
11: current depth depth
12: interval start p
13: for i 2 I do
14: if ( i is + ) then
15: increment(current depth)
16: if current depth = 1 then
17: `01  `01

S
[interval start, i]

18: if ( i is - ) then
19: decrement(current depth)
20: if current depth = 0 then
21: interval start i
22: return `01

Algorithm 4: Trim all segments

Input: line spoke `1 anchored at p for sample s
Output: uncovered segment of trimmed spoke `01

1: if Trim anchor point = empty then
2: return empty
3: return Trim anchored segment // not empty

Algorithm 5: Trim spoke, for blue noise

Input: input plane spoke `2 � {a, b} for sample s
Output: trimmed line spoke `01 ⇢ `2

1: p Trim anchor point(a)
2: if p = empty then
3: arc `1  Trim all segments ( circle through a and b )
4: p RandomSample( longest `1 )
5: `1  line(s, p)
6: `01  Trim anchored segment( `1, p )
7: return `01

Algorithm 6: Trim wheel, for dense blue noise
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(a) Line spokes for exploring a lo-
cal neighborhood around a sample
s.
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(a) iteration 0, # samples (1,1) (b) iteration 1, # samples (3, 2)

(c) iteration 2, # samples (5, 3) (d) iteration 3, # samples (7, 4)

(e) # samples (31, 31) (f) # samples (101, 101)

(g) # samples (301, 301) (h) # samples (601, 601)

(i) # samples (999, 999) (j) Smooth Herbie

Fig. 14: Comparing DIRECT (left) and our method (right) while exploring
the smooth Herbie function ??. We list the number of samples used by each:
(DIRECT, us).

high dimensions. The method combines the advantages of state-
of-the-art methods: the locality of advancing-front and simplicity
of k-d darts. We demonstrated the usefulness of our method for a
variety of applications.

Our method has several parameters. Usually the user has no choice
over the domain dimension d. If quick run-time is desired, then
select m = 12 consecutive misses. If higher saturation (� < 2)
is desired, use ?? to select m, but be prepared to wait in high di-
mensions. In any event, memory should be a minor issue. Degen-
erate spokes are faster than full spokes in terms of the number of
points inserted; this advantage tends to disappear as the dimension
increases beyond eight. Wheels are faster than line-spokes; since
they effectively reduce the dimension by (only) one, this advantage
decreases as the dimension increases. Moreover, both degenerate
spokes and wheels may be producing more points more quickly
merely because they are inserting more points at distance rc and
creating a tighter, less-random packing than maximal Poisson-disk
sampling. Our overall recommendation is to use full line-spokes.

We use line-spokes of extent twice the Poisson-disk radius, and se-
lect the next sample uniformly from the nearest segment. We sus-
pect that selecting the sample’s distance a proportional to ad�1 will
produce a distribution closer to maximal Poisson-disk sampling,
but the algorithm will still favor a tighter packing because spokes
are chosen without regard to their uncovered area. We would like
to understand the effect of the spoke extent and sample selection
criteria on the blue-noise of the output distribution.

We would like to analyze and improve the accuracy of generating
approximate Delaunay graphs. We speculate that our approximate
Delaunay graphs may supplant the use of k-nearest neighbors for
computational topology and manifold learning. The benefit is that
our Delaunay graph considers all directions; in contrast, for a point
near a dense cluster, k-nearest neighbors can miss significant neigh-
bors in directions opposite to the cluster.

Spoke-darts may inspire further research in global optimization.
We presented the approach and demonstrated it on a small set of
benchmarks. In our current implementation for motion planning
we precompute all samples. We are investigating the possibility of
sampling on the fly by exploiting the similarity between our method
and RRT tree growth. A potential application for high dimensional
blue noise sampling is rendering. Beyond sampling, we believe
spoke-darts can also benefit numerical integration as demonstrated
in Ebeida et al. [?].
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(b) DIRECT (left) and our spoke-darts version (right) using approximate
Voronoi cells. DIRECT’s sampling pattern visibly results in more long and
thin neighborhoods, reducing its accuracy. Our version more readily concen-
trates samples near the four minima; the upper right contains the global mini-
mum.

Figure 1.7. Spoke dart sampling and applying it to build a global
optimization algorithm.

1.2.4 Randomness and Optimization

Noise and Coverage, Optimizing Voronoi Aspect Ratio

In “Improving Spatial Coverage while Preserving the Blue Noise of Point Sets” [3] we explore the
question of whether it is possible to change a spatial distribution of samples to improve some of
its properties, without destroying its randomness properties. In particular, we wish to preserve the
blue-noise Fourier spectrum of the points, while improving the aspect ratio of its Voronoi cells. It
is well known that maximizing one of these properties destroys the other: uniform random points
have no aspect ratio bound, and the vertices of an equilateral triangular tiling have no randomness.
However, we show that there is a lot of room in the middle to get good values for both. We also
show that optimizing the aspect ratio directly can be more effective than popular methods such as
centroidal Voronoi tessellation, which optimize other criteria and change the aspect ratio as a side
effect; see Figure 1.8.
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(a) MPS, � = 1.0 (b) CVT, � = 0.827 (c) DistMesh, � = 0.873 (d) Far-Point, � = 0.965 (e) Opt-�i, � = 0.746

Fig. 4. Final mesh for a periodic unit box after applying various methods to the input MPS in (a). While CVT and DistMesh improve the quality of the
majority of the Voronoi cells, they tend to lose randomness at larger values of �. Far-Point on the other hand tends to violate the coverage condition. None
of the four methods were able to achieve � < 0.7 in general.
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Fig. 5. Distribution of quality measures. The left column compares the
different methods, and the right column compares Opt-�i for different �.

heuristic that requires only function values, not derivatives.
Its state consists of three candidate points c{1,2,3}, and the
�i function values if xi was repositioned at those locations.
To get started we select the first candidate point c1 at xi, the
second c2 at xi shifted in the x-axis direction by rMPS/10, and
the third c3 at xi shifted in the y-axis direction by rMPS/10.
These c{1,2,3} define a triangle, tilted in three dimensions by
assigning the respective height �i to its corners. Nelder–Mead
replaces the high corner by some point on the other side of its
opposite triangle edge, and recomputes a new triangle and its
tilt. We flip-flop through ten triangles and stop.
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Fig. 6. Variation of � as the iteration proceeds.

Each candidate may have different Delaunay neighbors than
the original point; we calculate �i using the candidate’s De-
launay neighbors, rather than the original points’ neighbors.
Sometimes, especially in initial iterations, xi moves outside of
the convex hull of its initial Delaunay neighbors: ri

c decreases
as xi moves towards the convex hull, but it may happen that ri

f

increases more rapidly, yielding a local improvement in �i. We
experimented with preventing this from happening, but found
it was faster to allow this to happen.

Often, improving �i causes a nearby point’s �j to get worse.
This is a common phenomenon in mesh smoothing algorithms,
and the common approach is to allow this to happen, and at-
tempt to remedy it later during the optimization of xj .

We sweep over all xi, locally optimizing and updating their po-
sitions. Each update happens immediately. That is, for a neigh-
bor xj of xi, we use the updated position of xi rather than its
initial position at the start of the sweep. Our input comes from
Simple MPS [15]. The output of that algorithm provides a nice
ordering to the points, by scan lines. Simple MPS divides the
domain into boxes of side length rMPS, and each box has at
most one point. On output the points are lexicographically or-
dered by the box they lie in, first by row then by column. This
is the order the points are visited during our Opt-�i sweep,
regardless of where they later migrate to. This is better than
considering points in random order.

5

Figure 1.8. Final mesh for a periodic unit box after applying var-
ious methods to the input MPS in (a). While CVT and DistMesh
improve the quality of the majority of the Voronoi cells, they tend
to lose randomness at larger values of β , which measures the
Voronoi cell aspect ratio bounds. Far-Point on the other hand tends
to violate the coverage condition. None of the four methods were
able to achieve more regular cells than β < 0.7 in general.

Noise and Cardinality, Resampling

“Sifted Disks” [4] asks a similar question about some other properties. Namely, we seek to preserve
randomness and Voronoi aspect ratios, while reducing the number of points needed. The Sifted
Disks technique is based on local resampling. Two neighboring points are removed and we attempt
to find a single random point that is sufficient to replace them both; see Figure 1.9. The resampling
respects the original sizing function; In that sense it is not a coarsening. The angle and edge
length guarantees of a Delaunay triangulation of the points are preserved. The Fourier spectrum
is largely unchanged. We provide an efficient algorithm, and demonstrate that sifting uniform
Maximal Poisson-disk Sampling (MPS) and Delaunay Refinement (DR) points reduces the number
of points by about 25%, and achieves a density about 1/3 more than the theoretical minimum. We
show two-dimensional stippling and meshing applications to demonstrate the significance of the
concept. Sifted disks has obvious applications to efficient sample designs, as a each sample point
represents an expensive physical or computational experiment. Samples without randomness may
introduce bias in the results, and poor Voronoi cells may also produce error or inefficiency.

Resampling for Modeling and Mesh Properties

We presented “Disk Density Tuning of a Maximal Random Packing” [9] at the USNCCM 13 in
July 2015, and we submitted a full paper to the ACM TOG journal. Disk tuning is an algorithmic
framework for adjusting the spatial density of disks in a maximal random packing, without chang-
ing the sizing function or radius function of the disks. As such, it is a general method that finds
application across sample design for opt/UQ, meshing, and direct modeling. Starting from any
maximal random packing such as the Maximal Poisson-disk Sampling (MPS), we iteratively relo-
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Figure 1.9. Sifted disks is based on local constrained resampling.
We attempt to remove two adjacent points, and replace it with one.
However, the replacement must not leave any part of the domain
uncovered.

cate, inject (add), or eject (remove) disks, using a set of three successively more aggressive local
operations. We may achieve a user-defined density, either more dense or more sparse, almost up to
the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality,
and except in the extremes, retain blue noise randomness properties of the input. We change the
density of the packing one disk at a time, maintaining the minimum disk separation distance and
the maximum domain coverage distance required of any maximal packing. These properties are
local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing
function improves the efficiency of some applications. We apply the framework to improve the
quality of meshes, removing non-obtuse angles and increasing edge-valence; see Figure 1.10 and
Figure 1.11. We also present an unusual application, that of actual physical modeling. The cross
section of a fiber reinforced polymers material appears as a set of nonoverlapping circles (fibers)
in the plane (cross section). We tuned the density of disks to match the fiber density in physical
reality, and achieved better elastic and failure simulations; see Figure 1.12.

1.2.5 High Dimensional Data Analysis

We were invited to participate in a workshop on high dimensional data analysis. The workshop
decided to write a book, and we contributed a chapter [6] summarizing our high dimensional
sampling techniques, and speculating on how they might be used for data analysis. Through this
exercise, we conceived of a unified way to consider all the degrees of freedom across sampling
methods, and how many existing methods related to each other; see Figure 1.13.
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Figure 1.10. Removing obtuse angles in planar meshes using
“Disk Density Tuning of a Maximal Random Packing.”

1.3 Meshing

1.3.1 Planar Meshing

Robust All-Quad Meshing of Domains with Connected Regions

“Robust All-Quad Meshing of Domains with Connected Regions,” [17] was accepted to the 24th
International Meshing Roundtable (IMR), Austin TX, October 2015. In this paper, we present a
new algorithm for all-quad meshing of non-convex domains, with connected regions. Our method
starts with a strongly balanced quadtree. In contrast to snapping the grid points onto the geomet-
ric boundaries, we move points a slight distance away from the common boundaries. Then we
intersect the moved grid with the geometry. This allows us to avoid creating any flat quads, and
we are able to handle two-sided regions and more complex topologies than prior methods. The
algorithm is provably correct, robust, and cleanup-free; meaning we have angle and edge length
bounds, without the use of any pillowing, swapping, or smoothing. Thus, our simple algorithm is
also more predictable than prior art. See Figure 1.14 and Figure 1.15

Delaunay Quadrangulation

We discovered a method to produce quad meshes, based on sampling points and using a subset of
Delaunay edges. Sample points can be generated randomly, or in advancing front; see Figure 1.16.
Points are assigned one of two colors, and we only include the Delaunay edges between points of
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Figure 1.11. Removing obtuse angles in curved surface meshes
using “Disk Density Tuning of a Maximal Random Packing.”

(a) Simulated tensile responses of a structured hexagonal, struc-
tured square, and tuned-disk packing; and experimental peak
load.

(b) Peak load stresses. (c) Post-fracture
stresses.

Figure 1.12. Fiber material modeling using “Disk Density Tun-
ing of a Maximal Random Packing.” Tuned disks predict the fail-
ure point better than traditional hexagonal or square packings.

opposite color. This provides even-sided cells, most of which are quads. Larger cells are either
removed by resampling, or we can retain the original sample points and add a few more to sub-
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Figure 1.13. A conceptual space for sampling methods.

divided then combine the large cells into several quadrilaterals. The conference proceedings [14]
describes the algorithm, and the proofs are available as an appendix in a longer tech report [15].

Steiner Point Reduction

“Steiner Point Reduction in Planar Delaunay Meshes” [1] is a meshing application of a particular
form of disk tuning. In particular, we developed a mesh simplification strategy that preserves
angle bounds, called sifting. See Figure 1.17 for an example mesh reduction. We introduce a set of
constraints for the location of the new point based on the desired minimum angle and compute an
explicit representation of the solution region, which we then sample from to find the replacement
point. Thanks to the angle bounds, the number of constraints is bounded by a constant and all
updates are local. This strategy generalizes edge collapse, as it possibly combines edge swaps to
update the mesh after replacement. Preliminary results for a sample of planar Delaunay meshes
are then presented. We demonstrate significant improvements of Triangle output, in terms of the
number of Steiner points needed for a required angle bound, specially for large bounds where
Triangle is known to possibly perform poorly.
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(a) Start with any
all-quad grid. We
choose to start with
uniformly-Cartesian grid
or a strongly-balanced
quadtree.

(b) Repel mesh points
away from the bound-
aries of the input
domain, and split all
elements intersected by
the domain boundary
into hybrid elements
conforming with the
boundary.

(c) Apply the mid-point
subdivision rule to split
intersected and deformed
elements to guarantee an
all-quad mesh. Some el-
ements of this mesh will
possess hanging nodes.

(d) Employ the two-
refinement templates to
get rid of all hanging
nodes, generating the
final conforming all-
quad mesh with good
qualities.

Figure 1.14. “Robust All-Quad Meshing of Domains with Con-
nected Regions” algorithm steps.

1.3.2 Sizing Function Discovery

Spatial domain sampling is a core component for a variety of applications. Prior sampling meth-
ods need explicit sizing functions as input. However, specifying the ideal sizing function can be a
difficult and ill-defined task for several important geometry problems. In mesh generation, Delau-
nay refinement offers a way to adaptively discover the local feature size function. However, this
technique is inherently serial.

We present a disk-packing method to sample spatial domains and discover the local feature
size. Our key idea is to place samples according to local features of the domain boundary, and
adjust their radii based on nearby disks, to satisfy the required smoothness conditions, and other
prescriptions such as element shapes. Applications of our method include mesh generation and
Reeb graph construction in 2–3D Euclidean space, and embedded curved surfaces. Figure 1.18
illustrates meshing a domain with a convoluted boundary.

1.3.3 VoroCrust, Voronoi Meshing And Surface Reconstruction

We introduce VoroCrust [10], the first algorithm for simultaneous surface reconstruction and 3D
Voronoi meshing; see Figure 1.19. Like the power crust, it creates Voronoi cells inside and outside
a smooth manifold, and the reconstructed surface is their interface. Unlike the power crust, the
Voronoi cells are unweighted and have good aspect ratio. Moreover, there is complete freedom of
how to mesh the volume far from the surface. Most of the reconstructed surface is composed of
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Figure 1.15. “Robust All-Quad Meshing of Domains with Con-
nected Regions” examples.

Delaunay triangles with small circumcircle radius, and all samples are vertices. In the presence of
slivers, the reconstruction lies inside the sliver, interpolating between its upper and lower pair of
bounding triangles, and introducing Steiner vertices.

VoroCrust meshes are distinguished from the usual approach of clipping Voronoi cells by the
manifold, which results in many extra surface vertices beyond the original samples, and may result
in non-planar, non-convex, or even non-star-shaped cells.

As with many other reconstruction methods, in theory the initial sampling must be an ε-lfs
dense sampling, and in practice a coarser sampling suffices. Here ε-lfs means the sample density
must be a small constant times the “local feature size”, which measures both the local curvature
and thickness of the model. However, VoroCrust samples must be weighted. We provide an sphere-
packing algorithm to generate a suitable sampling.

We also consider the theoretical question of whether it is possible to use 3D Voronoi cells to
reconstruct a surface geometrically matching a prescribed triangulation, given the freedom for the
cells to shatter the triangles into smaller ones. We show this is possible, given mild conditions on
the dihedral angles between the triangles; e.g. an ε-lfs sampling suffices.
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Abstract

We introduce a bichromatic Delaunay quadrangulation principle by assigning the vertices of a Delaunay triangulation one of two
colors, then discarding edges between vertices of the same color. We present algorithms for generating quadrangulations using
this principle and simple refinements. The global vertex coloring ensures that only local refinements are needed to get all quads.
This is in contrast to triangle-pairing algorithms, which get stuck with isolated triangles that require global refinement. We present
two new sphere-packing algorithms for generating the colored triangulation, and we may also take as input a Delaunay refinement
mesh and color it arbitrarily. These mesh non-convex planar domains with provable quality: quad angles in [10�, 174�] and edges
in [0.1, 2]r. The algorithms extend to curved surfaces and graded meshes. The “random” algorithm generates points with blue
noise. The “advancing-front” algorithm produces large patches of boundary-aligned square tilings.
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Fig. 1: Delaunay quadrangulation (top) from two-color disks (bottom light and dark circles). Left: random. Right: advancing front.
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Figure 1.16. Delaunay quadrangulation (top) from two-color
disks (bottom light and dark circles). Left: random. Right: ad-
vancing front.

Figure 1.17. The standard Delaunay refinement (DR) technique
produces good quality elements, but many of them. By sifting the
mesh, we were able to reduce the number of elements by 78%,
while preserving the minimum and maximum angles.

To see how the algorithm works, see Figure 1.20. We generate or are given a set of well-
spaced manifold sample points that captures small and sharp features. We create a sphere around
each sample. Some triples of overlapping spheres define a pair of intersection points, mirrored
on each side of the manifold. Pairs outside all other spheres are represent weighted triangulation
circumcenters and taken as Voronoi seeds. We create additional well-spaced seeds far interior
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(a) L = 0.25→ αmin = 23.63 (b) αmin = 23.63

(c) L = 0.45→ αmin = 17.18 (d) αmin = 17.22

(e) L = 0.65→ αmin = 11.62 (f) αmin = 11.63

(g) L = 0.85→ αmin = 9.23 (h) αmin = 9.28

(i) L = 0.95→ αmin = 4.71 (j) αmin = 4.75

Figure 1.18. Disk-packing sampling meshes discovered the local
feature size, without being guided by a prespecified sizing func-
tion. Disk radii (inter-point distances) are about the constant L
times the local feature size. There is a natural tradeoff between L
and the minimum angle α in the mesh.
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Figure 1.19. An example hex dominant 3D Voronoi mesh recon-
structing a surface.

VoroCrust: Unclipped Conforming Voronoi Meshing • 3

2D
3D

Initial samples Point pairs Interior/exterior mesh Reconstructed surface Domain mesh

Fig. 1: 2D and 3D example of the main steps of VoroCrust. From left to right: starting with points S (green) sampled from a surface M, the
algorithm constructs disks centered around the samples B(S), identifies the point pairs and labels them as inside (blue) and outside (red).
The intersection points are used as seeds to construct a Voronoi Diagram V. (In 3D, the Voronoi cells of exterior seeds are not shown.) We
output the Voronoi facets separating interior and exterior cells as M̂. Additionally, we can fill the interior of D and construct the Voronoi
diagram V to get a volumetric Voronoi mesh D̂ that conforms to the surfaceM̂.

circles. This halves the number of seeds, which generates fewer
Steiner points.

Optimization-2 uses an even larger ✏1 such that for each edge the
two vertex spheres overlap. This allows the edge to use the same
circle for each of its vertices. Compared to no optimizations, again
this halves the seeds.

Optimization-3 uses an even larger ✏1 such that for each triangle
its three vertices’ spheres overlap. This allows a single seed pair
per face, instead of two seed pairs from each vertex when no op-
timizations are performed. This uses only 1/6 the number of non-
optimized seeds and generates no Steiner points.

1.3 Related Work

VoroCrust creates two desirable constructions simultaneously: a
Voronoi mesh of a volume and a reconstruction of the volume’s
bounding surface. We highlight the differences between VoroCrust
and the standard methods for both of these problems.

Meshes with simultaneously-good primal and dual geometry are
useful for geometry processing. This is easier to achieve if a
weighted dual is used [Mullen et al. 2011; de Goes et al. 2014].
Our method may be interpreted as using a weighted primal, the ball
radii around sample points, in order for the unweighted dual to have
good properties.

1.3.1 Voronoi Surface Meshing. Much work in graphics on
Voronoi, CVT, and poly meshing is only concerned with the 2D sur-
face mesh embedded in 3D, and not a mesh of the enclosed volume.
Usually one starts with a meshed surface and wishes to remesh it
with a better one. Sometimes a 3D Voronoi mesh is restricted (in-
tersected) with a surface [Amenta and Bern 1999; Dey et al. 2012;
Dey and Wang 2013; Mullen et al. 2010; Yan et al. 2009], or one
may use a 2D weighted CVT in an abstract parameter plane [Alliez
et al. 2005].

All known embedded surface Voronoi meshing techniques either
constrain the seeds (not the Voronoi vertices) to prior sample
points, or let them float. As such, the samples do not appear as
(the only) vertices of the Voronoi mesh. (It is easy to create primal
meshes with this property.)

1.3.2 Voronoi Volume Meshing by Clipping Cells. There are
many prior techniques for creating a Voronoi mesh of a volume
[Ebeida and Mitchell 2011; Lévy and Bonneel 2013; Yan et al.
2010; 2013]. They all involve creating or moving seeds in a domain,
forming their Voronoi cells, then clipping the cells by the volume’s
boundary surface. The surface mesh matches the geometry of the
manifold, but is unconstrained by any prior sample locations, and
the samples are not (the only) vertices of the surface mesh. That is,
none simultaneously solve our Voronoi topological reconstruction
problem; see Figure 2.

Interior seeds may by created by dualizing a well-centered tetrahe-
dral mesh [Garimella et al. 2014; VanderZee et al. 2010], or by di-
rect sampling [Ebeida and Mitchell 2011]. The dualizing approach
leverages simplicial mesh generation, which is mature. A Voronoi
mesh where all seed points are far interior to the domain provides
better aspect-ratio shape than boundary-fitted seeds, and is easier
to achieve with the sampling approach. As with traditional meshes,
complicated, convoluted, concave, or even just curved boundaries
present some challenges and require smaller elements, etc. In this
setting boundary-fitted seed points provide tighter control.

Seeds may also be moved with optimization to generate initial or
improved seed locations [de Goes et al. 2014; Du et al. 2003; Du
and Wang 2005; Du et al. 2010; Sieger et al. 2010]. A CVT can be
used to orient seeds with a field, and have the primal mesh recover
sharp geometric features. Using an Lp-distance function, it is pos-
sible to create an arrangement of seeds so that many primal (tetra-
hedral) elements can be combined into cubical (hex) ones [Lévy
and Liu 2010]. CubeCover [Nieser et al. 2011] also creates a hex-
dominant mesh using a frame field. However, the hexes are gener-

ACM Transactions on Graphics, Vol. 34, No. 4, Article 106, Publication date: August 2015.

Figure 1.20. VoroCrust algorithm steps, illustrated for 2D and
3D domains.

to the manifold; these may define a hex-dominant mesh. The manifold is reconstructed by the
Voronoi facets separating the inside and outside cells. These unweighted Voronoi cells provide a
simple and robust way of testing whether a query point is inside or outside the volume: simply find
the nearest-neighbor seed and check whether it is an interior or exterior seed.

1.4 Presentations without Papers

Most of our significant results are described above and in papers, so for most of the additional talks
we list them without elaboration.
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1.4.1 Minisymposia

1. Characterizing Sample Distribution Properties and their Impact on Experimental Design.
Scott A. Mitchell and Mohamed S. Ebeida organized and gave two talks. UQ14, SIAM
Conference on Uncertainty Quantification, 2014

2. Voronoi Dual Meshing and Simulation. Mohamed Ebeida and Scott Mitchell organized.
LDRD participants gave three talks: Ebeida, Abdelkader, Rushdi. USNCCM13, 2015

1.4.2 Invited Talks

1. Exploring High-dimensional Spaces using Well-spaced Random Points and Hyperplane Sam-
pling with Application to Graphics, Meshes, Global optimization, Uncertainty and Robotics.
ICES, UT Austin. Host: Chandrajit Bajaj. 2014

2. Exploring High Dimensional Spaces with Hyperplane Sampling, (k-d Darts: Sampling by
k-Dimensional Flat Searches), UT Austin. Host: Chandrajit Bajaj 2014

3. Algorithms for well-spaced random points with application to uncertainty, meshes, optimiza-
tion, graphics and robotics, VCCC Summit, KAUST. Host: Peter Wonka. 2014

4. Well-spaced Random Points for Graphics, Meshes, Optimization, Uncertainty and Robotics.
Workshop on challenges in integrated computational structure-material modeling of high
strain-rate deformation and failure in heterogeneous materials, Johns Hopkins University,
Host: Somnath Ghosh. 2013

5. Well-spaced Random Points for Graphics, Meshes, Optimization, Uncertainty and Robotics.
Computer Science dept., UNC Chapel Hill. Host: Dinesh Manocha, 2013

6. Improved Poisson-disk Sampling for Meshing, Uncertainty Quantification and Graphics Ap-
plications. UCIrvine, Host: David Eppstein, 2013

7. VoroCrust, at the Polytopal Element Methods workshop, 2015

1.4.3 Regular Talks

1. Improved Poisson-disk Sampling for Meshing Applications, at the World Congress on Com-
putational Mechanics (WCCM XI) 2014. [5]

2. VoroCrust Algorithm: 3D Polyhedral Meshing with True Voronoi Cells Conforming to Sur-
face Samples, key note speaker, at the 13th USNCCM, 2015.

3. VoroCrust Geometry: 3D Polyhedral Meshing with True Voronoi Cells Conforming to Pre-
scribed Surface Points, also at the USNCCM 2015.
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4. Feature-Preserving Spatial Density Tuning of a Maximal Random Disk Packing, also at the
13th USNCCM, 2015.

5. POF darts: Geometric Adaptive Sampling for Probability of Failure Estimation, at the SIAM
conference onUncertainty Quantification, 2014.

6. Balloon Darts: Estimating the Volume of the Union of d-Balls with Spoke Samples, at SIAM
GD/SPM, 2013. [12]

1. “Improved Poisson-disk Sampling for Meshing Applications” [5] describes how random-
ness can also be to avoid mesh-induced non-physical phenomena in simulations. For example, in
some fracture simulations, fractures only propagate along mesh edges, and having random edge
orientations produces more realistic cracks. Even when randomness is not desired, we believe disk-
packing based meshes promise several advantages over the alternatives. We describe several new
approaches to Poisson-disk sampling and resampling to generate and improve simplicial meshes in
d-dimensional spaces. We produce provably good tessellations, with quality bounds similar to (or
better) than deterministic Delaunay refinement methods. It is inherently easier for our methods to
follow a sizing function because of the close connection between Poisson-disks and the local mesh
size. We show results for the uniform and the non-uniform case. We show several applications to
examples to demonstrate the efficiency of our methods.

6. “Balloon Darts: Estimating the Volume of the Union of d-Balls with Spoke Samples” [12]
describes randomized approximate algorithms for computing the volume of the union of d-dimensional
balls. The deterministic, exact approaches do not scale well to high dimensions. However, we adapt
several of these to a local sampling approach, sampling within each ball, using a polar variation
of k-d darts. We sample balls with randomly-oriented lines through their centers. The sampling
process is more accurate per unit work when we use line samples rather than point samples. This
efficiency gain is because a line sample provides more information, and the analytic equation for
a sphere makes computing a line sample almost as fast as a point sample. For the power cell de-
composition, we extend this to sampling with with planes (“wheels”). We compare the efficiency
of these and other methods, and provide guidance on which method to choose for a given type of
ball distribution.

1.4.4 Internal Talks

1. LS Polynomial Optimization for Constructing Voronoi Piecewise Surrogates, Sandia Na-
tional Labs internal presentation, 2014

2. “Well-Spaced Random Point Sets for Sampling and Meshing” [11] to the visiting Sandia
summer students. The goal was to introduce the topics of point distributions and sampling,
and their various applications, to the students.

3. We gave numerous review talks to the program managers of the CIS LDRD IAT as part of
the normal LDRD process, and to management.
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Chapter 2

Partnerships

2.1 Innovative Interactions for Innovative Ideas—Meshing and
Computer Graphics Relevance

Under this LDRD we researched the geometry and statistics of sample distributions, as well as
algorithms to generate samples with particular geometric and statistical properties, for uncertainty
quantification and optimization, and secondarily for mesh generation. The underlying sampling
and geometry methods we studied for uncertainty quantification suggested many meshing im-
provements. In particular, the properties of well-spacedness and adaptive density of sample points
are common for both domains, and also for sampling for graphics rendering.

Sampling, geometric computing, and mesh generation are central to Sandia’s modeling and
simulation activities. While these topics originated in mathematics and engineering, they have
now become cross disciplinary. It may be surprising to some in the computational science and
engineering fields to note the following connection with computer graphics. Finding samples with
particular properties is a key topic in graphics, for example spanning the space, without redun-
dancy, or without aliasing or bias in particular frequencies, or other statistical properties. Generat-
ing samples with similar properties is a significant research topic for this LDRD, as it is used for
uncertainty quantification, optimization, and mesh generation. These are all topics central to San-
dia’s simulation-based science and stewardship missions. The common application in computer
graphics is sampling light rays, for rendering a variety of phenomena such as blur and ambient
light color. Rendering applications are not central goals of the LDRD, but the algorithms used
for those applications are, because fundamentally both graphics and optimization & uncertainty
applications use sparse samples to estimate a numerical integral.

2.2 University Partnerships

2.2.1 University of California, Davis, Prof. John Owens

We had a university contract with Prof. John Owens at University of California, Davis. The goal
was to research, implement and demonstrate new random sampling techniques that enable estimat-
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ing the probability of failure of high dimensional computer models. This is based on estimating the
volume of a response (function value) below a given threshold. The broader research problem is
sampling to discover the global properties of functions that are too complex and high dimensional
to analyze analytically. UC Davis’s focus was to research scalable sampling techniques. UC Davis
brings a cross fertilization of ideas, from their expertise in sampling techniques and applications
from computer graphics. UC Davis also provides expertise in GPU programming, and evaluation
of sample designs.

2.2.2 University of North Carolina, Prof. Dinesh Manocha

We had a university contract with Prof. Dinesh Manocha of UNC. His student Chonhyun Park was
active on the project. We researched algorithms and software to generate point distributions in high
dimensions, for the efficient exploration of that space. Motivating applications include Uncertainty
Quantification UQ and Robotic motion planning, with synergy between the two. Exploring the
high-dimensional heterogenous space of geometric configurations is UNC’s expertise.

2.2.3 University of Texas, Austin, Prof. Chandrajit Bajaj

We had a university contract with Prof. Chandrajit Bajaj at UT Austin. Prof. Bajaj brought a
depth of geometric knowledge that was particularly helpful for the VoroCrust project. His research
associate Ahmed Rushdi worked on numerous projects, including DAKOTA surrogates software
and publications.

2.3 University Interactions

We had a variety of research interactions with the following people. These included visits, re-
search discussions and co-authorships. Don Sheehy (Univ Connecticut); Gary Miller (CMU);
David Eppstein (UC-Irvine), Ahmad Rushdi (UTAustin); Ahmed Mahmoud (Alexandria Univ.);
Alexander Rand (Cd-adapco); Andrew Davidson (UCDavis); Anjul Patney (nVidia); Chandra-
jit Bajaj (UTAustin); Chonhyon Park (UNC); Dinesh Manocha (UNC); John Owens (UCDavis);
Li-Yi Wei (HKU); Mohammed Mohammed (Alexandria Univ.); Muhammad Awad (Alexandria
Univ.); Tzeng Stanley (UCDavis); Xiaoyin Ge (OSU). Dong-Ming Yan, Peter Wonka (KAUST);
Ahmed Abdelkader (Univ. Maryland, extended visit).
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Chapter 3

Software

All of our publications, except the one comparing methods, involved writing software. Most of this
software was written to demonstrate and verify the algorithms. Some of the opt/UQ capabilities
were ported to DAKOTA and matured, under a variety of projects. We hope to build a publicly
releasable meshing and spatial decomposition library as follow-on projects.

3.1 Implementations in DAKOTA

3.1.1 Probability Of Failure (POF)-Darts

POF-Darts has been implemented into Dakota as a NonD iterator method to estimate the tail prob-
ability (Probability Of Failure) based on random disk-packing in the uncertain parameter space.
The POF-Darts method is identified using the keyword “pof darts” in Dakota. POF-Darts uses
hyperplane sampling to explore the unexplored part of the uncertain space. We use the function
evaluation at a sample point to determine whether it belongs to failure or non-failure regions, and
surround it with a protection sphere region to avoid clustering. Decomposing the domain into
Voronoi cells around the function evaluations as seeds, our strategy to choose the radius of the
protection sphere depends on the local Lipschitz continuity. For each cell, we estimate the local
Lipschitz continuity using the function values of the significant Voronoi neighbors, and create a
sphere to protect its neighborhood from future sampling. As sampling proceeds, regions uncov-
ered with spheres would shrink, improving the estimation accuracy. After exhausting the function
evaluation budget, we build a surrogate model using the function evaluations associated with the
sample points and estimate the probability of failure by exhaustive sampling of that surrogate.

3.1.2 Voronoi Piecewise Surrogates (VPS)

VPS has been implemented in Dakota as an option for global surrogate models; see Figure 3.1
It currently supports polynomial Least-Squares regression, Gaussian Processes (GP), and Radial
Basis Functions (RBF). From a Dakota input spec perspective, a global surrogate runs in a VPS
mode by listing the keyword: domain decomp. The keywords “support layers”, “cell type”, and
“discontinuity detection” are optional capabilities. VPS can also make use of derivative informa-
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tion (gradients and Hessians). VPS breaks down the high-order polynomial approximation prob-
lem into a set of piecewise low-order polynomial approximation problems in the neighborhood of
each function evaluation, independently. The one-to-one mapping between the number of function
evaluations and the number of Voronoi cells, regardless of the number of dimensions, eliminates
the curse of dimensionality associated with standard domain decompositions. The Voronoi tes-
sellation is naturally updated with the addition of new function evaluations. Due to its piecewise
construction, VPS handles functions with discontinuities accurately by partitioning the Voronoi
tessellation into several sub-tessellations, trapping discontinuities along Voronoi facets. Allowing
local approximations to use neighbors that belong to the same sub-tessellation only improves the
accuracy of the final surrogate model.

Figure 3.1. DAKOTA’s software design for surrogates

3.1.3 Recursive k-d Darts (RKD)

A research version of RKD has been implemented in Dakota. It is currently a “NonD” (non-
deterministic) iterator standalone method to evaluate high-dimensional numerical integrations. The
RKD-Darts method is identified using the keyword “rkd darts” in Dakota. RKD uses the initial
sample budget and recursively guides where to add available samples. After exhausting the sample
budget, it builds a global surrogate to approximate the underlying function everywhere. It uses the
surrogate to return the approximate numerical integration of the underlying function. RKD was
made possible by the ideas generated by the LDRD, but the RKD software was funded solely by
ASC.
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Chapter 4

Conclusion

In conclusion, we consider this to be one of the more enjoyable and successful LDRD’s we have
participated in. We were encouraged by the breadth of ideas we were able to take from one field
and apply to another, notably applying geometric ideas to uncertainty quantification. We were
encouraged by the number of papers we were able to publish. We look forward to seeing some of
the work started under the LDRD through to completion, as new publications and software. The
LDRD inspired numerous promising ideas for follow-on projects.
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